Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions
نویسندگان
چکیده
Likelihood inference in structural vector autoregressions with independent non-Gaussian shocks leads to parametric identification and efficient estimation at the risk of inconsistencies under distributional misspecification. We prove that autoregressive coefficients (scaled) impact multipliers remain consistent, but drifts shocks’ standard deviations are generally inconsistent. Nevertheless, we show consistency when log-likelihood uses a discrete scale mixture normals symmetric case, or an unrestricted finite more generally, compare efficiency these estimators other consistent two-step proposals, including our own. Finally, empirical application looks dynamic linkages between three popular volatility indices.
منابع مشابه
Breakdown Points for Maximum Likelihood Estimators of Location–scale Mixtures
ML-estimation based on mixtures of Normal distributions is a widely used tool for cluster analysis. However, a single outlier can make the parameter estimation of at least one of the mixture components break down. Among others, the estimation of mixtures of t-distributions by McLachlan and Peel [Finite Mixture Models (2000) Wiley, New York] and the addition of a further mixture component accoun...
متن کاملOn the Identification of Structural Vector Autoregressions
F ollowing seminal work by Sims (1980a, 1980b), the economics profession has become increasingly concerned with studying sources of economic fluctuations. Sims’s use of vector autoregressions (VARs) made it possible to address both the relative importance and the dynamic effect of various shocks on macroeconomic variables. This type of empirical analysis has had at least two important consequen...
متن کاملThe Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملAsymptotic Distributions of Quasi-Maximum Likelihood Estimators
Asymptotic properties of MLEs and QMLEs of mixed regressive, spatial autoregressive models are investigated. The stochastic rates of convergence of the MLE and QMLE for such models may be less than the √ n-rate under some circumstances even though its limiting distribution is asymptotically normal. When spatially varying regressors are relevant, the MLE and QMLE of the mixed regressive, autoreg...
متن کاملStability of Mixtures of Vector Autoregressions with Autoregressive Conditional Heteroskedasticity
This paper gives necessary and sufficient conditions for stationarity and existence of second moments in mixtures of linear vector autoregressive models with autoregressive conditional heteroskedasticity. Sufficient conditions are also provided for a more general model in which the mixture components are permitted to exhibit limited forms of nonlinearity. When specialized to the corresponding n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2023
ISSN: ['1872-6895', '0304-4076']
DOI: https://doi.org/10.1016/j.jeconom.2022.02.010